首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9561篇
  免费   1112篇
  国内免费   2103篇
生物科学   12776篇
  2023年   197篇
  2022年   187篇
  2021年   283篇
  2020年   397篇
  2019年   431篇
  2018年   411篇
  2017年   420篇
  2016年   435篇
  2015年   445篇
  2014年   414篇
  2013年   578篇
  2012年   431篇
  2011年   473篇
  2010年   368篇
  2009年   420篇
  2008年   460篇
  2007年   477篇
  2006年   459篇
  2005年   462篇
  2004年   363篇
  2003年   404篇
  2002年   365篇
  2001年   342篇
  2000年   270篇
  1999年   277篇
  1998年   267篇
  1997年   245篇
  1996年   230篇
  1995年   225篇
  1994年   189篇
  1993年   210篇
  1992年   182篇
  1991年   170篇
  1990年   163篇
  1989年   181篇
  1988年   197篇
  1987年   116篇
  1986年   110篇
  1985年   106篇
  1984年   94篇
  1983年   42篇
  1982年   69篇
  1981年   47篇
  1980年   34篇
  1979年   38篇
  1978年   28篇
  1977年   10篇
  1976年   13篇
  1974年   10篇
  1958年   9篇
排序方式: 共有10000条查询结果,搜索用时 350 毫秒
991.
A field experiment was established at 2000 m above sea level (asl) in the central Swiss Alps with the aim of investigating the effects of elevated ozone (O(3)) and nitrogen deposition (N), and of their combination, on above-ground productivity and species composition of subalpine grassland. One hundred and eighty monoliths were extracted from a species-rich Geo-Montani-Nardetum pasture and exposed in a free-air O(3)-fumigation system to one of three concentrations of O(3) (ambient, 1.2 x ambient, 1.6 x ambient) and five concentrations of additional N. Above-ground biomass, proportion of functional groups and normalized difference vegetation index (NDVI) were measured annually. After 3 yr of treatment, the vegetation responded to the N input with an increase in above-ground productivity and altered species composition, but without changes resulting from elevated O(3). N input > 10 kg N ha(-1) yr(-1) was sufficient to affect the composition of functional groups, with sedges benefiting over-proportionally. No interaction of O(3) x N was observed, except for NDVI; positive effects of N addition on canopy greenness were counteracted by accelerated leaf senescence in the highest O(3) treatment. The results suggest that effects of elevated O(3) on the productivity and floristic composition of subalpine grassland may develop slowly, regardless of the sensitive response to increasing N.  相似文献   
992.
Litterfall and fine root production were measured for three years as part of a carbon balance study of three forest stands in the Pacific Northwest of the United States. A young second-growth Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] stand, a second-growth Douglas-fir with red alder (Alnus rubra Bong.) stand, and an old-growth (∼550 years) Douglas-fir stand were monitored for inputs of carbon and nitrogen into the soil from litterfall and fine root production, as well as changes in soil C and N. Fine root production and soil nutrient changes were measured through the use of soil ingrowth bags containing homogenized soil from the respective stands. Litterfall biomass was greatest in the Douglas-fir-alder stand (527 g m−2 yr−1) that annually returned nearly three times the amount of N as the other stands. Mean residence time for forest floor material was also shortest at this site averaging 4.6 years and 5.5 years for C an N, respectively. Fine root production in the upper 20 cm ranged from 584 g m−2 in the N rich Douglas-fir-alder stand to 836 g m−2 in the old-growth stand. Fine root production (down to one meter) was always greater than litterfall with a below:above ratio ranging from 3.73 for the young Douglas-fir stand to 1.62 for the Douglas-fir-alder stand. The below:above N ratios for all three stands closely approximate those for biomass. Soil changes in both C and N differed by site, but the soil C changes in the old-growth stand mirrored those obtained in an ongoing CO2 flux study. Results from the soil ingrowth bags strongly suggest that this method provides a simple, but sufficient device for measuring potential fine root biomass production as well as soil chemical changes.  相似文献   
993.
We investigated fungal species-specific responses of ectomycorrhizal (ECM) Scots pine (Pinus sylvestris) seedlings on growth and nutrient acquisition together with mycelial development under ambient and elevated CO2. Each seedling was associated with one of the following ECM species: Hebeloma cylindrosporum, Laccaria bicolor, Suillus bovinus, S. luteus, Piloderma croceum, Paxillus involutus, Boletus badius, or non-mycorrhizal, under ambient, and elevated CO2 (350 or 700 μl l−1 CO2); each treatment contained six replicates. The trial lasted 156 days. During the final 28 days, the seedlings were labeled with 14CO2. We measured hyphal length, plant biomass, 14C allocation, and plant nitrogen and phosphorus concentration. Almost all parameters were significantly affected by fungal species and/or CO2. There were very few significant interactions. Elevated CO2 decreased shoot-to-root ratio, most strongly so in species with the largest extraradical mycelium. Under elevated CO2, ECM root growth increased significantly more than hyphal growth. Extraradical hyphal length was significantly negatively correlated with shoot biomass, shoot N content, and total plant N uptake. Root dry weight was significantly negatively correlated with root N and P concentration. Fungal sink strength for N strongly affected plant growth through N immobilization. Mycorrhizal fungal-induced progressive nitrogen limitation (PNL) has the potential to generate negative feedback with plant growth under elevated CO2. Responsible Editor: Herbert Johannes Kronzucker  相似文献   
994.
Nodule conductance to O2 diffusion has been involved as a major factor of the inhibition of N2 fixation by soil salinity that severely reduces the production of grain legumes. In order to determine the effect of this constraint on the nodule conductance, oxygen uptake by the nodulated roots of Cicer arietinum was measured by recording the concentration of O2 as a function of pO2 in a gas-tight incubator. After germination and inoculation with the strain Mesorhizobium ciceri UPMCa7, the varieties Amdoun 1 and INRAT 93-1 were hydroponically grown in a glasshouse on 1L glass bottles filled with nutrient solution containing 25 mM NaCl. Salinity induced a marked decrease in shoot (30% versus 14%), root (43% versus 20%), and nodule biomass (100% versus 43%) for Amdoun 1 relative to INRAT 93-1. Although salinity completely prevented nodule formation in the sensitive variety Amdoun 1, nodule number and biomass were higher in the first than in the second variety in the absence of salt. This effect was associated with a significantly higher O2 uptake by nodulated root (510 versus 255 micromol O2 plant(-1)h(-1)) and nodule conductance (20 versus 5 microm s(-1)) in Amdoun 1 than in INRAT 93-1. Salinity did not significantly change the nodule conductance and nodule permeability for INRAT 93-1. Thus, the salt tolerance of this variety appears to be associated with stability in nodule conductance and the capacity to form nodules under salt constraint.  相似文献   
995.
996.
Anthemis cotula is a widespread invasive alien species in Kashmir Himalaya. Being a winter annual, the species reproduces entirely by achenes and synchrony between germination requirements of the species and the habitat conditions must be of critical importance in its invasiveness. To examine how the achenes of different ages respond to different environmental cues, two laboratory experiments were performed wherein effects of different nitrogen applications and growth hormones under continuous light and dark conditions were explored. Results show that the achenes are positively photoblastic and have requirement for after‐ripening. Nitrogen applied either as potassium nitrate or as thiourea significantly improved achene germination both under continuous light and dark conditions. Although kinetin (6‐furfurylaminopurine) did not influence achene germination, gibberellic acid (GA3) applied at 1.0 mM concentration had the most significant effect on the final percentage germination under both light and dark conditions. These results suggest that the achenes have an elaborate mechanism of sensing the habitat conditions that helps them to synchronise their germination with favourable environmental conditions – a strategy that aids the species in ensuring recruitment, survival and its spread in Kashmir Himalaya.  相似文献   
997.
998.
AIMS: To identify several strains of Mesorhizobium amorphae and Mesorhizobium tianshanense nodulating Cicer arietinum in Spain and Portugal, and to study the symbiotic genes carried by these strains. METHODS AND RESULTS: The sequences of 16S-23S intergenic spacer (ITS), 16S rRNA gene and symbiotic genes nodC and nifH were analysed. According to their 16S rRNA gene and ITS sequences, the strains from this study were identified as M. amorphae and M. tianshanense. The type strains of these species were isolated in China from Glycyrrhiza pallidiflora and Amorpha fruticosa nodules, respectively, and are not capable of nodulating chickpea. These strains carry symbiotic genes, phylogenetically divergent from those of the chickpea isolates, whose nodC and nifH genes showed more than 99% similarity with respect to those from Mesorhizobium ciceri and Mesorhizobium mediterraneum, the two common chickpea nodulating species in Spain and Portugal. CONCLUSIONS: The results from this study showed that different symbiotic genes have been acquired by strains from the same species during their coevolution with different legumes in distinct geographical locations. SIGNIFICANCE AND IMPACT OF THE STUDY: A new infrasubspecific division named biovar ciceri is proposed within M. amorphae and M. tianshanense to include the strains able to effectively nodulate Cicer arietinum.  相似文献   
999.
1000.
We investigated the responses of photon-saturated photosynthesis rate (P sat) and its simultaneous acclimation of anatomy and nitrogen use patterns of current needles of Korean pine (Pinus koraiensis) seedlings grown under factorial combinations of two nitrogen levels and irradiances. Although N supply resulted in a significant increase of N content in needles under both irradiances, the increase of P sat tended to be suppressed only in shade (S). The significant increase of P sat in full sunlight (O) was associated with the increase of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and chlorophyll (Chl) contents. In contrast, small increase of Chl content and no increase of RuBPCO content were found in S (90 % cut of full irradiance), which would result in a small increase of P sat. This result suggests that extra N is stocked in needles under shade for the growth in next season. With N supply, a significant decrease of specific leaf area (SLA) was detected only in O. This decrease of SLA was due to the increase of density of needle. Furthermore, the increase of needle density was not due to the increased number and size of mesophyll cells, but the increased density of each mesophyll cell. Therefore, although SLA changed in O, the change did not involve anatomical adaptation to use increased N effectively, at least observable by light microscopy. Hence, even though the SLA would change, N deposition will improve the photosynthetic capacity of Korean pine seedlings, not through the development of needle anatomy but through improvement of the allocation of N in both irradiances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号